・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Towards a Comprehensive Environment for Aeroservoelastic analysis in Edge flow solver

L. Cavagna, P. Masarati, G. Quaranta and P. Mantegazza

Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano

November 15, 2007 FOI Swedish Defence Agency, Kista - Stockholm

Motivations a	nd targets
---------------	------------

Reduced Order Models generation

Next developments:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Outline

- 2 Reduced Order Models generation
- **3** Transpiration Method
- 4 Next developments:
 Spatial coupling: MLS Technique
 Multibody coupling: MBDyn

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Outline

- 2 Reduced Order Models generation
- 3 Transpiration Method
- Next developments:
 Spatial coupling: MLS Technique
 Multibody coupling: MBDyn

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Outline

- 2 Reduced Order Models generation
- Transpiration Method
- 4 Next developments:
 Spatial coupling: MLS Technique
 Multibody coupling: MBDyn

Outline

- 2 Reduced Order Models generation
- 3 Transpiration Method
- 4 Next developments:
 - Spatial coupling: MLS Technique
 - Multibody coupling: MBDyn

Outline

- 2 Reduced Order Models generation
- Transpiration Method
- 4 Next developments:
 - Spatial coupling: MLS Technique
 - Multibody coupling: MBDyn

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Outline

- 2 Reduced Order Models generation
- **3** Transpiration Method
- Next developments:
 Spatial coupling: MLS Technique
 Multibody coupling: MBDyn

Motivations and Targets

- Enhance the modelling of the aerodynamics with non-linear effects
- Overcome the lacks provided by classic linear(ized) theories Applications:
 - Phenomena related to compressibility (Transonic Dip)
 - Phenomena related to viscosity (separations, stall flutter, buffeting)
 - Investigate Limit Cycle Oscillations (LCO)
 - Consider interference effects (under-wing stores, innovative configurations, joined wings)

Motivations and Targets

- Enhance the modelling of the aerodynamics with non-linear effects
- Overcome the lacks provided by classic linear(ized) theories Applications:
 - Phenomena related to compressibility (Transonic Dip)
 - Phenomena related to viscosity (separations, stall flutter, buffeting)
 - Investigate Limit Cycle Oscillations (LCO)
 - Consider interference effects (under-wing stores, innovative configurations, joined wings)

Motivations and Targets

- Enhance the modelling of the aerodynamics with non-linear effects
- Overcome the lacks provided by classic linear(ized) theories Applications:
 - Phenomena related to compressibility (Transonic Dip)
 - Phenomena related to viscosity (separations, stall flutter, buffeting)
 - Investigate Limit Cycle Oscillations (LCO)
 - Consider interference effects (under-wing stores, innovative configurations, joined wings)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivations and Targets

- Enhance the modelling of the aerodynamics with non-linear effects
- Overcome the lacks provided by classic linear(ized) theories Applications:
 - Phenomena related to compressibility (Transonic Dip)
 - Phenomena related to viscosity (separations, stall flutter, buffeting)
 - Investigate Limit Cycle Oscillations (LCO)
 - Consider interference effects (under-wing stores, innovative configurations, joined wings)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivations and Targets

- Enhance the modelling of the aerodynamics with non-linear effects
- Overcome the lacks provided by classic linear(ized) theories Applications:
 - Phenomena related to compressibility (Transonic Dip)
 - Phenomena related to viscosity (separations, stall flutter, buffeting)
 - Investigate Limit Cycle Oscillations (LCO)
 - Consider interference effects (under-wing stores, innovative configurations, joined wings)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivations and Targets

- Enhance the modelling of the aerodynamics with non-linear effects
- Overcome the lacks provided by classic linear(ized) theories Applications:
 - Phenomena related to compressibility (Transonic Dip)
 - Phenomena related to viscosity (separations, stall flutter, buffeting)
 - Investigate Limit Cycle Oscillations (LCO)
 - Consider interference effects (under-wing stores, innovative configurations, joined wings)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivations and Targets

Few considerations

• Apply Computational Aeroelasticity (CA) CFD in real life applications

- Unsteady CFD is now a succesfull research field
- Computational costs precluded it so far from extensive industrial applications
- Aircraft is designed by different dedicated departments
- Large number of configuration needs to be assessed

Target

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivations and Targets

Few considerations

- Apply Computational Aeroelasticity (CA) CFD in real life applications
 - Unsteady CFD is now a succesfull research field
 - Computational costs precluded it so far from extensive industrial applications
 - Aircraft is designed by different dedicated departments
 - Large number of configuration needs to be assessed

Target

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivations and Targets

Few considerations

- Apply Computational Aeroelasticity (CA) CFD in real life applications
 - Unsteady CFD is now a succesfull research field
 - Computational costs precluded it so far from extensive industrial applications
 - Aircraft is designed by different dedicated departments
 - Large number of configuration needs to be assessed

Target

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivations and Targets

Few considerations

- Apply Computational Aeroelasticity (CA) CFD in real life applications
 - Unsteady CFD is now a succesfull research field
 - Computational costs precluded it so far from extensive industrial applications
 - Aircraft is designed by different dedicated departments
 - Large number of configuration needs to be assessed

Target

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivations and Targets

Few considerations

- Apply Computational Aeroelasticity (CA) CFD in real life applications
 - Unsteady CFD is now a succesfull research field
 - Computational costs precluded it so far from extensive industrial applications
 - Aircraft is designed by different dedicated departments
 - Large number of configuration needs to be assessed

Target

Motivations and Targets

Few considerations

- Apply Computational Aeroelasticity (CA) CFD in real life applications
 - Unsteady CFD is now a succesfull research field
 - Computational costs precluded it so far from extensive industrial applications
 - Aircraft is designed by different dedicated departments
 - Large number of configuration needs to be assessed

Target

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Outline

Motivations and targets

2 Reduced Order Models generation

- 3 Transpiration Method
- Next developments:
 Sectial counting MLS
 - Spatial coupling: MLS Technique
 - Multibody coupling: MBDyn

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Creation of Reduced Order Models (ROM)

Motivations:

- Where can we find flutter instabilities?
- How to study Aeroservoelasticity?
- \bullet Create a ROM for discrete reduced freq. jk and Mach M_∞
- Aerodynamic Generalized Forces (GAF) are represented by a transfer matrix: H_{am}(jk, M_∞)
- Classic aeroelastic system equation:

$$\left(\mathsf{M}\,s^2 + \mathsf{K} - \frac{1}{2}\rho\,V^2\mathsf{H}_{am}(\rho, M_{\infty})\right)q = F_{ext} \qquad (1)$$

Creation of Reduced Order Models (ROM)

Motivations:

- Where can we find flutter instabilities?
- How to study Aeroservoelasticity?

• Create a ROM for discrete reduced freq. jk and Mach M_∞

- Aerodynamic Generalized Forces (GAF) are represented by a transfer matrix: H_{am}(jk, M_∞)
- Classic aeroelastic system equation:

$$\left(\mathsf{M}\,s^2 + \mathsf{K}\,-\frac{1}{2}\rho\,V^2\mathsf{H}_{am}(p,M_\infty)\right)q = F_{\text{ext}} \qquad (1)$$

Creation of Reduced Order Models (ROM)

Motivations:

- Where can we find flutter instabilities?
- How to study Aeroservoelasticity?
- ullet Create a ROM for discrete reduced freq. jk and Mach M_∞
- Aerodynamic Generalized Forces (GAF) are represented by a transfer matrix: H_{am}(jk, M_∞)
- Classic aeroelastic system equation:

$$\left(\mathsf{M}\,s^2 + \mathsf{K}\,-\frac{1}{2}\rho\,V^2\mathsf{H}_{am}(p,M_{\infty})\right)q = F_{\mathsf{ext}} \qquad (1)$$

Creation of Reduced Order Models (ROM)

Motivations:

- Where can we find flutter instabilities?
- How to study Aeroservoelasticity?
- Create a ROM for discrete reduced freq. jk and Mach M_∞
- Aerodynamic Generalized Forces (GAF) are represented by a transfer matrix: H_{am}(jk, M_∞)
- Classic aeroelastic system equation:

$$\left(\mathbf{M}\,s^2 + \mathbf{K}\,-\,\frac{1}{2}\rho\,V^2\mathbf{H}_{am}(p,M_{\infty})\right)q = F_{ext} \qquad (1)$$

Creation of Reduced Order Models (ROM)

Creation of ROM using a CFD code

- A perturbation is given to the system using one modal shape with assigned time-law $q_i(\tau)$
- GAF are postprocessed and contribute to one column of $\mathbf{H}_{am}(jk, M_{\infty})_i$
- A numerical linearization process is carried out (to be verified)

Used time-law: blended step

$$q_{i}(\tau) = \begin{cases} \frac{q_{i\infty}}{2} \left(1 - \cos \Omega_{0} \tau\right) & 0 \leq \tau < \tau_{\max}, \\ q_{i\infty} & \tau \geq \tau_{\max} \end{cases}$$
(2)
h $\tau = \frac{tV_{\infty}}{L_{a}}, \ \tau_{max} = \frac{2\pi}{k_{max}}, \ \Omega_{0} = \frac{\pi}{\tau_{max}}$

Creation of Reduced Order Models (ROM)

Creation of ROM using a CFD code

- A perturbation is given to the system using one modal shape with assigned time-law $q_i(\tau)$
- GAF are postprocessed and contribute to one column of $\mathbf{H}_{am}(jk, M_{\infty})_i$
- A numerical linearization process is carried out (to be verified)

Used time-law: blended step

 $q_{i}(\tau) = \begin{cases} \frac{q_{i\infty}}{2} \left(1 - \cos \Omega_{0} \tau\right) & 0 \leq \tau < \tau_{\max}, \\ q_{i\infty} & \tau \geq \tau_{\max} \end{cases}$ (2) with $\tau = \frac{tV_{\infty}}{L_{a}}, \ \tau_{max} = \frac{2\pi}{k_{max}}, \ \Omega_{0} = \frac{\pi}{\tau_{max}}$

▲□▶▲圖▶▲目▶▲目▶ ④�?

Creation of Reduced Order Models (ROM)

Creation of ROM using a CFD code

• A FFT of GAF gives the required column for different values of *jk*:

$$\mathbf{H}_{\mathrm{am}}(jk, M_{\infty})_{i} = \frac{\mathcal{F}(\mathbf{f}_{a}(\tau, M_{\infty})_{i})}{\mathcal{F}(q(\tau, M_{\infty})_{i})}.$$
(3)

Considerations:

- Fast flutter tracking using classic *p*-*k* method
- The aerodynamic ROM can be identified into a state space model (Modern Aeroelasticity)
- Servos transfer matrices can be linked to the aeroelastic system
- The starting condition is non-linear and should represent the equilibrium condition to be perturbed

Creation of Reduced Order Models (ROM)

Creation of ROM using a CFD code

• A FFT of GAF gives the required column for different values of *jk*:

$$\mathbf{H}_{\mathrm{am}}(jk, M_{\infty})_{i} = \frac{\mathcal{F}\left(\mathbf{f}_{a}(\tau, M_{\infty})_{i}\right)}{\mathcal{F}\left(q(\tau, M_{\infty})_{i}\right)}.$$
(3)

Considerations:

- Fast flutter tracking using classic *p*-*k* method
- The aerodynamic ROM can be identified into a state space model (Modern Aeroelasticity)
- Servos transfer matrices can be linked to the aeroelastic system
- The starting condition is non-linear and should represent the equilibrium condition to be perturbed

AGARD 445.6 wing: aeroelastic flutter benchmark

Computational domain

Surface mesh

Structural model:

- Structural modal model from GVT
- First 4 vibration modes used $(9 \rightarrow 91Hz)$
- Tested for different Mach numbers in WT

Aerodynamic model:

- Euler equations
- 227.278 volume points
- 86.371 points on wing boundary

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回回 のの(?)

Conclusions

AGARD 445.6 wing: aeroelastic flutter benchmark

Flutter Frequency Index

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Considerations:

- Very good results using Edge flow solver
- Inviscid model is enough for this simple case

AGARD 445.6 wing: aeroelastic flutter benchmark

Transfer matrix coefficients, $M_{\infty} = 1.141$

Conclusions

AGARD 445.6 wing: aeroelastic flutter benchmark

Velocity-damping diagram

Velocity-frequency diagram

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Outline

Motivations and targets

2 Reduced Order Models generation

3 Transpiration Method

4 Next developments:

- Spatial coupling: MLS Technique
- Multibody coupling: MBDyn

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Transpiration method

Advantages:

Simulate domain changes without updating the domain

Applications:

- Classic panel methods to modify thickness by sources
- Boundary layer patching with inviscid models
- Multi Disciplinar Optimization
- Aeroservoelasticity

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Transpiration method

Advantages:

Simulate domain changes without updating the domain

Applications:

- Classic panel methods to modify thickness by sources
- Boundary layer patching with inviscid models
- Multi Disciplinar Optimization
- Aeroservoelasticity

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Transpiration method

Advantages:

Simulate domain changes without updating the domain

Applications:

- Classic panel methods to modify thickness by sources
- Boundary layer patching with inviscid models
- Multi Disciplinar Optimization
- Aeroservoelasticity
▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Transpiration method

Advantages:

Simulate domain changes without updating the domain

Applications:

- Classic panel methods to modify thickness by sources
- Boundary layer patching with inviscid models
- Multi Disciplinar Optimization
- Aeroservoelasticity

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Transpiration method

Advantages:

Simulate domain changes without updating the domain

Applications:

- Classic panel methods to modify thickness by sources
- Boundary layer patching with inviscid models
- Multi Disciplinar Optimization
- Aeroservoelasticity

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Transpiration method

Advantages:

Simulate domain changes without updating the domain

Applications:

- Classic panel methods to modify thickness by sources
- Boundary layer patching with inviscid models
- Multi Disciplinar Optimization
- Aeroservoelasticity

Transpiration method

Method principle:

Air suction/blowing through the wall to modify local flow direction

Considerations:

- Many FSI problems depend mostly on mean-flow
- Structural motion represents a small perturbation
- Grid deformation techniques are time-consuming
- Control surfaces deflection is not a trivial task

RAE airfoil, $M_{\infty} = 0.3$, $\alpha = 5 deg$

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

- Structural deformation/rigid body motion change boundary orientation n_u
- When inviscid flow used the condition on the deformed boundary *n_d* now reads:

$$V = V - (V \cdot n_d) n_d \tag{4}$$

- The flow has a normal component contributing to wall boundary fluxes along *n_u* now
- The term *n_d* is always calculated exactly
- Structural displacements cannot be accounted for
- Only normal deflections can be considered

- Structural deformation/rigid body motion change boundary orientation n_u
- When inviscid flow used the condition on the deformed boundary *n_d* now reads:

$$V = V - (V \cdot n_d) n_d \tag{4}$$

- The flow has a normal component contributing to wall boundary fluxes along *n_u* now
- The term *n_d* is always calculated exactly
- Structural displacements cannot be accounted for
- Only normal deflections can be considered

- Structural deformation/rigid body motion change boundary orientation n_u
- When inviscid flow used the condition on the deformed boundary *n_d* now reads:

$$V = V - (V \cdot n_d) n_d \tag{4}$$

- The flow has a normal component contributing to wall boundary fluxes along n_u now
- The term n_d is always calculated exactly
- Structural displacements cannot be accounted for
- Only normal deflections can be considered

- Structural deformation/rigid body motion change boundary orientation n_u
- When inviscid flow used the condition on the deformed boundary *n_d* now reads:

$$V = V - (V \cdot n_d) n_d \tag{4}$$

- The flow has a normal component contributing to wall boundary fluxes along *n_u* now
- The term n_d is always calculated exactly
- Structural displacements cannot be accounted for
- Only normal deflections can be considered

- Structural deformation/rigid body motion change boundary orientation n_u
- When inviscid flow used the condition on the deformed boundary *n_d* now reads:

$$V = V - (V \cdot n_d) n_d \tag{4}$$

- The flow has a normal component contributing to wall boundary fluxes along *n_u* now
- The term n_d is always calculated exactly
- Structural displacements cannot be accounted for
- Only normal deflections can be considered

- Structural deformation/rigid body motion change boundary orientation n_u
- When inviscid flow used the condition on the deformed boundary *n_d* now reads:

$$V = V - (V \cdot n_d) n_d \tag{4}$$

- The flow has a normal component contributing to wall boundary fluxes along *n_u* now
- The term n_d is always calculated exactly
- Structural displacements cannot be accounted for
- Only normal deflections can be considered

Cinematic contribution

• Structural velocity V_B contributes to wall velocity along n_d :

$$V_N = (V_B \cdot n_d) \tag{5}$$

• If a structural model is used, superimposition can be exploited:

$$V_B = \sum_{i=1}^{N} U_i \dot{q}_i, U_i = modal shape, \dot{q}_i = modal vel.$$
 (6)

Global boundary condition:

• Thus the transpiration wall boundary condition reads:

$$V = V - (V \cdot n_d - V_B \cdot n_d) n_d \quad (also on MultiGrid) \quad (7)$$

Cinematic contribution

• Structural velocity V_B contributes to wall velocity along n_d :

$$V_N = (V_B \cdot n_d) \tag{5}$$

• If a structural model is used, superimposition can be exploited:

$$V_B = \sum_{i=1}^{N} U_i \dot{q}_i, \ U_i = modal \ shape, \dot{q}_i = modal \ vel.$$
 (6)

Global boundary condition:

• Thus the transpiration wall boundary condition reads:

$$V = V - (V \cdot n_d - V_B \cdot n_d) n_d \quad (also on MultiGrid) \quad (7)$$

Cinematic contribution

• Structural velocity V_B contributes to wall velocity along n_d :

$$V_N = (V_B \cdot n_d) \tag{5}$$

• If a structural model is used, superimposition can be exploited:

$$V_B = \sum_{i=1}^{N} U_i \, \dot{q}_i \,, \, U_i = modal \, shape, \dot{q}_i = modal \, vel.$$
 (6)

Global boundary condition:

• Thus the transpiration wall boundary condition reads:

$$V = V - (V \cdot n_d - V_B \cdot n_d) n_d$$
 (also on MultiGrid) (7)

Conclusions

Transpiration method: steady results

Test definition

- AGARD 445.6 deformed along the 1st torsional mode
- Tip twist rotation of 4.5 deg
- All the sections are interested to structural deflection

Test presented

- Mach numbers: 0.678, 0.960, 1.141
- *Cp* chordwise compared to deformed grid results
- 4 different stations considered: $\eta = 0.650$, 0.787, 0.853, 0.918

Steady results: $M_{\infty} = 0.678$

Steady results: $M_{\infty} = 0.678$

Transpiration

Steady results: $M_{\infty} = 0.960$

Steady results: $M_{\infty} = 0.960$

Transpiration

Steady results: $M_{\infty} = 1.141$

Reduced Order Models generation

Next developments:

Conclusions

Steady results: $M_{\infty} = 1.141$

Transpiration

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Outline

Motivations and targets

4 Next developments:

- Spatial coupling: MLS Technique
- Multibody coupling: MBDyn

Reduced Order Models generation

Next developments:

Spatial coupling: MLS Technique

Partitioned analysis issues

Modelling differences

- Discretizations
- Refinement
- Topologies
- Element formulation

Constraints

- Interpolation
- Extrapolation
- Mesh independence

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Conservation
- Localization

Reduced Order Models generation

Next developments:

Spatial coupling: MLS Technique

Partitioned analysis issues

Modelling differences

- Discretizations
- Refinement
- Topologies
- Element formulation

Constraints

- Interpolation
- Extrapolation
- Mesh independence

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Conservation
- Localization

Spatial coupling: MLS Technique

Moving Least Squares Technique (MLS): definition

Features

- Meshless approach
- Energy conservation
- Suitable for complex geometries and incompatible meshes
- Freedom to rule the quality/smoothness of the interpolation

Problem formulation

Reconstruction of a generic function $f \in C^{d}(\Omega)$, on a compact space $\Omega \subseteq \mathbb{R}^{n}$, from its values $f(\bar{\mathbf{x}}_{1}), \ldots, f(\bar{\mathbf{x}}_{N})$ on scattered distinct centres $X = \{\bar{\mathbf{x}}_{1}, \ldots, \bar{\mathbf{x}}_{N}\}$

Note

It is not necessary to derive an analitical expression for f

Spatial coupling: MLS Technique

Moving Least Squares Technique (MLS): definition

Features

- Meshless approach
- Energy conservation
- Suitable for complex geometries and incompatible meshes
- Freedom to rule the quality/smoothness of the interpolation

Problem formulation

Reconstruction of a generic function $f \in C^{d}(\Omega)$, on a compact space $\Omega \subseteq \mathbb{R}^{n}$, from its values $f(\bar{\mathbf{x}}_{1}), \ldots, f(\bar{\mathbf{x}}_{N})$ on scattered distinct centres $X = \{\bar{\mathbf{x}}_{1}, \ldots, \bar{\mathbf{x}}_{N}\}$

Note

It is not necessary to derive an analitical expression for f

Spatial coupling: MLS Technique

Moving Least Squares Technique (MLS): definition

Features

- Meshless approach
- Energy conservation
- Suitable for complex geometries and incompatible meshes
- Freedom to rule the quality/smoothness of the interpolation

Problem formulation

Reconstruction of a generic function $f \in C^{d}(\Omega)$, on a compact space $\Omega \subseteq \mathbb{R}^{n}$, from its values $f(\bar{\mathbf{x}}_{1}), \ldots, f(\bar{\mathbf{x}}_{N})$ on scattered distinct centres $X = \{\bar{\mathbf{x}}_{1}, \ldots, \bar{\mathbf{x}}_{N}\}$

Note

It is not necessary to derive an analitical expression for f

< ロ > < 団 > < 豆 > < 豆 > < 団 > < 回 > < < つ < や)

Spatial coupling: MLS Technique

Moving Least Squares Technique (MLS): conservation

Conservation issues

• Coupling conditions are enforced in a weak sense through a variational principle

Application of the Virtual Works Principle

Given two admissible virtual displacements $\delta {\bf y}_f, \, \delta {\bf y}_s$ for each field and matrix ${\bf H}$

 $\delta \mathbf{y}_f = \mathbf{H} \, \delta \mathbf{y}_s; \mathbf{F}_f = \mathbf{H} \, \mathbf{F}_s$

then by equating the virtual works W_f, W_s :

$$\mathbf{W}_{f} = \delta \mathbf{y}_{f}^{\mathsf{T}} \mathbf{F}_{f} = \delta \mathbf{y}_{s}^{\mathsf{T}} \mathbf{H}^{\mathsf{T}} \mathbf{F}_{f} = \delta \mathbf{y}_{s}^{\mathsf{T}} \mathbf{F}_{s}$$

follows: $\mathbf{F}_s = \mathbf{H}^T \mathbf{F}_f$

Spatial coupling: MLS Technique

Moving Least Squares Technique (MLS): conservation

Conservation issues

• Coupling conditions are enforced in a weak sense through a variational principle

Application of the Virtual Works Principle

Given two admissible virtual displacements $\delta {\bf y}_f,\, \delta {\bf y}_s$ for each field and matrix ${\bf H}$

$$\delta \mathbf{y}_f = \mathbf{H} \, \delta \mathbf{y}_s; \mathbf{F}_f = \mathbf{H} \, \mathbf{F}_s$$

then by equating the virtual works $\mathbf{W}_f, \mathbf{W}_s$:

$$\mathbf{W}_{f} = \delta \mathbf{y}_{f}^{T} \mathbf{F}_{f} = \delta \mathbf{y}_{s}^{T} \mathbf{H}^{T} \mathbf{F}_{f} = \delta \mathbf{y}_{s}^{T} \mathbf{F}_{s}$$

follows: $\mathbf{F}_s = \mathbf{H}^T \mathbf{F}_f$

Spatial coupling: MLS Technique

Moving Least Squares Technique (MLS): approximation

Local approximation

f is usually expressed as sum of monomial basis functions $p_i(\mathbf{x})$

$$\hat{f}(\mathbf{x}) = \sum_{i=1}^{m} p_i(\mathbf{x}) a_i(\mathbf{x}) \equiv \mathbf{p}^T(\mathbf{x}) \mathbf{a}(\mathbf{x}),$$

Interface matrix **H** construction

The coefficients $\mathbf{a}_i(\mathbf{x})$ are obtained by performing a weighted least square fit for the approximation \hat{f}

Minimise
$$J(\mathbf{x}) = \int_{\Omega} \phi(\mathbf{x} - \bar{\mathbf{x}}) \left(\hat{f}(\mathbf{x}, \bar{\mathbf{x}}) - f(\bar{\mathbf{x}})\right)^2 d\Omega(\bar{\mathbf{x}})$$

with the constraint: $\hat{f}(\mathbf{x}, \bar{\mathbf{x}}) = \sum_{i=1}^{m} p_i(\bar{\mathbf{x}}) a_i(\mathbf{x})$

Spatial coupling: MLS Technique

Moving Least Squares Technique (MLS): localization

Problem localization

Function W can be chosen as a smooth non-negative compact support Radial Basis Function

Wendland Radial Basis Functions (RBF)

Usually written as function of (r/δ) , where δ is the suport size Example:

• $W(r/\delta) = (1 - r/\delta)^2$ (C⁰ Wendland Function)

User control

The smoothness is ruled by changing the suport size δ and the number of source points through optimized searching algorithms

Spatial coupling: MLS Technique

Moving Least Squares Technique (MLS): localization

Problem localization

Function W can be chosen as a smooth non-negative compact support Radial Basis Function

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Wendland Radial Basis Functions (RBF)

Usually written as function of (r/δ) , where δ is the suport size Example:

• $W(r/\delta) = (1 - r/\delta)^2$ (C⁰ Wendland Function)

User control

The smoothness is ruled by changing the suport size δ and the number of source points through optimized searching algorithms

Spatial coupling: MLS Technique

Moving Least Squares Technique (MLS): localization

Problem localization

Function W can be chosen as a smooth non-negative compact support Radial Basis Function

Wendland Radial Basis Functions (RBF)

Usually written as function of (r/δ) , where δ is the suport size Example:

•
$$W(r/\delta) = (1 - r/\delta)^2$$
 (C⁰ Wendland Function)

User control

The smoothness is ruled by changing the suport size δ and the number of source points through optimized searching algorithms

Reduced Order Models generation

Next developments: ○○○○○●○ Conclusions

Spatial coupling: MLS Technique

Moving Least Squares Technique (MLS): results

Next developments: ○○○○○●

Multibody coupling: MBDyn

Target:

- Couple Edge and MBDyn (www.aero.polimi.it/~mbdyn)
- Investigate free-flying deformable maneuvering aircraft

First required tools:

- General spatial coupling (available soon)
- Transpiration boundary condition (available)
- Moving reference frame (already available)

Multibody features:

- Rigid body dynamics considered and large rotations
- Structural modelled with non-linear or modal elements
- Large displacements, non-linear material laws
- Non-linearities (free-plays, frictions), control systems, actuators

Next developments: ○○○○○●

Multibody coupling: MBDyn

Target:

- Couple Edge and MBDyn (www.aero.polimi.it/~mbdyn)
- Investigate free-flying deformable maneuvering aircraft

First required tools:

- General spatial coupling (available soon)
- Transpiration boundary condition (available)
- Moving reference frame (already available)

Multibody features:

- Rigid body dynamics considered and large rotations
- Structural modelled with non-linear or modal elements
- Large displacements, non-linear material laws
- Non-linearities (free-plays, frictions), control systems, actuators

Next developments: ○○○○○●

Multibody coupling: MBDyn

Target:

- Couple Edge and MBDyn (www.aero.polimi.it/~mbdyn)
- Investigate free-flying deformable maneuvering aircraft

First required tools:

- General spatial coupling (available soon)
- Transpiration boundary condition (available)
- Moving reference frame (already available)

Multibody features:

- Rigid body dynamics considered and large rotations
- Structural modelled with non-linear or modal elements
- Large displacements, non-linear material laws
- Non-linearities (free-plays, frictions), control systems, actuators
| Motivations and targets |
|-------------------------|
|-------------------------|

Reduced Order Models generation

Next developments:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Conclusions

Outline

Motivations and targets

- 2 Reduced Order Models generation
- **3** Transpiration Method
- 4 Next developments:
 Spatial coupling: MLS Technique
 Multibody coupling: MBDyn

5 Conclusions

Next developments:

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで

Conclusion and future developments

Conclusions

- ROM are very useful for fast flutter tracking
- Euler equation represent a good compromise between accuracy and costs
- Transpiration boundary condition can be exploited in many cases
- Spatial coupling needs to be general for whatever model
- Conservation issues to be guaranteed
- Control on coupling smoothness and localization to be guaranteed

Acknowledgments

- Jonathan Smith, FOI
- Peter Eliasson, FOI

References

L. Cavagna, G. Quaranta, and P. Mantegazza

Application of Navier-Stokes simulations for aeroelastic assessment in transonic regime

Computers & Structures, vol. 85, no. 11-14, pp. 818-832, 2007.

- L. Cavagna, G. Quaranta, P. Mantegazza, and D. Marchetti Aeroelastic assessment of the free flying aircraft in transonic regime International Forum on Aeroelasticity and Structural Dynamics IFASD-2007, (Stochkolm, Sweden), June 18-20, 2007.
 - G. Quaranta, P. Masarati, and P. Mantegazza

A conservative mesh-free approach for fluid-structure interface problems

International Conference on Computational Methods for Coupled Problems in Science and Engineering (M. Papadrakakis, E. Oñate, and B. Schrefler, eds.), (Santorini, Greece), CIMNE, 2005.

Towards a Comprehensive Environment for Aeroservoelastic analysis in Edge flow solver

L. Cavagna, P. Masarati, G. Quaranta and P. Mantegazza

Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano

November 15, 2007 FOI Swedish Defence Agency, Kista - Stockholm

▲ロト ▲冊ト ▲ヨト ▲ヨト 三回日 ろんで