
MBDyn Tutorials

Maintained by mbdyn@aero.polimi.it

Dipartimento di Ingegneria Aerospaziale
of the University “Politecnico di Milano ”

July 15, 2009

mailto:mbdyn@aero.polimi.it
http://www.aero.polimi.it
http://www.polimi.it

Contents

1 Introduction 4
1.1 Basic Syntax . 4

2 Free Rigid Body 7
2.1 Execution . 9
2.2 Plotting: gnuplot Example . 10

3 Rigid Pendulum 12

4 Rigid Chain 20

5 Cantilever Beam 21

6 Piezo-electrically Actuated Beam 28

7 Hydraulically Actuated Beam 31

8 Modal Body 41
8.1 Introduction . 41
8.2 Kinematics . 42

8.2.1 The modal Node . 42
8.2.2 Rigid Body Motion . 42
8.2.3 Shape Selection . 42

8.3 The modal Joint . 46
8.3.1 Static Analysis . 46
8.3.2 Dynamic Analysis with Detailed Inertia Forces 46
8.3.3 Dynamic Analysis with Coarse Inertia Forces 46

8.4 Numerical Example . 46

1

List of Figures

2.1 Rigid body Z position . 11
2.2 Rigid body trajectory . 11

3.1 Vectors 1 and 3 are given in the global XYZ frame to define frame 123 18

6.1 Transverse velocity of the free end of a cantilevered beam, with and
without the piezoelectric shunt . 30

8.1 Modal node displacement. 49
8.2 Excited node displacement. 49
8.3 Mode amplitude. 50

2

List of Tables

3

Chapter 1

Introduction

MBDyn is a rather sophisticated, nearly-industrial strenght multibody multidisciplinary
analysis code. It was born at the Dipartimento di Ingegneria Aerospaziale of the Uni-
versity “Politecnico di Milano ” as an academic, or research, code. As such, it still
lacks some features that are typical of commercial codes, such as a nice and easy-to-
use graphical interface and a complete post-processor. As a consequence, users that are
accustomed to commercial codes may find its use a bit awkward.

The following tutorials are aimed at giving some initial advice in understanding the
input syntax of MBDyn and in interpreting the fundamental output. Along with this
practical information, some insights in MBDyn ’s logic and analytical bases will be
given, hopefully in a simple and clear form. Those interested in the analytical details
should browse the scientific bibliography page, while those interested in the details of
the implementation should directly read the code.

1.1 Basic Syntax
A brief summary of the basic syntax is presented first. The syntax of an input file for
MBDyn is structured in terms of statements. A statement follows the syntax:

<card> [: <arglist>] ;

that is, a valid card name, depending on its nature, may be followed by a colon and
by a list of (comma separated) arguments; it is always terminated by a semicolon.
Statements are logically divided in blocks. Each block is opened by a begin statement
and it is closed by an end statement:

begin: <block> ;
block data

end: <block> ;

The valid blocks (and their sequence) is:

• data

4

http://www.aero.polimi.it
http://www.polimi.it

• <problem>

• control data

• nodes

• drivers (optional)

• elements

• parallel (only if the parallel solver is used and explicit directives are re-
quired)

The data block at present contains the type of problem that is solved by the anal-
ysis. The most significant one is initial value.

The <problem> block takes the name of the problem defined in the data block; it
contains all the information required by the integration method to perform the desired
simulation regardless of the nature of the problem.

The control data block mostly contains information about the problem that is
required to ensure that a consistent model will be generated.

The nodes block contains all the nodes required by the simulation. They are
separated from the rest of the data for historical reasons, because the nodes are defined
as the entities that make degrees of freedom available to the simulation, so they must
exist before any element is generated.

The drivers block is optional. It may contain some special driver data.
Finally, the elements block contains all the elements. They are defined as the

entities that generate equations using the degrees of freedom provided by the nodes.
A layout of a typical input file is:

begin: data;
global simulation data
problem: initial value;

end: data;

begin: initial value;
problem-dependent data

end: initial value;

begin: control data;
global model data

end: control data;

begin: nodes;
nodes

end: nodes;

begin: drivers;
drivers

5

end: drivers;

begin: elements;
elements

end: elements;

6

Chapter 2

Free Rigid Body

A very simple example is presented: a free rigid body. Consider a free rigid body
subject to a dead load. A body in MBDyn is made of three distinct entities:

• a kinematic degrees of freedom owner

• a dynamic degrees of freedom owner

• an inertia owner

The first entity is called a node; it is placed somewhere in the global inertial frame,
and its position and orientation become degrees of freedom of the problem. The sec-
ond entity is not called at all, unless strictly necessary. It is automatically generated
whenever a “dynamic node” is required. It simply makes dynamic degrees of freedom
(momentum and momenta moment) available to the simulation. The last entity is called
a body; it adds an inertial contribution to the dynamic degrees of freedom of the node.
This separation has been introduced to allow the definition of kinematic degrees of
freedom regardless of any inertia, and to allow multiple sources of inertia to contribute
independently to the dynamic degrees of freedom of one node.

In the present implementation, MBDyn must be informed since the very beginning
about the number of entities of each type that it will be required to read. Although such
approach introduces an additional checksum on the consistency of the model, it may
be very annoying when dealing with very large models, and it will be eliminated in
the future. However, for backwards compatibility, the checksum will remain available,
and, if present, it will be authoritative.

The input file for our simple example is:

begin: data;
problem: initial value; # the default

end: data;

begin: initial value;
initial time: 0.;
final time: 1.;

7

time step: 1.e-3;

max iterations: 10;
tolerance: 1.e-6;

end: initial value;

begin: control data;
structural nodes: 1;
rigid bodies: 1;
forces: 1;

end: control data;

begin: nodes;
in zero, with no speed
structural: 1, dynamic, null, eye, 0.,1.,0., null;

end: nodes;

begin: elements;
body: 1, 1, 1., null, eye;
force: 1, absolute,

1, 0.,0.,1., null, const, -9.81;
/*
* we have better ways to define gravity, though

*/
end: elements;

Let’s have a look at the problem: we have

structural: 1, dynamic, null, eye, 0.,1.,0., null;

that is a “dynamic” node in “null”, “eye”, “0.,1.,0.”, “null”; what does it mean? The
keyword “dynamic” means the node will have dynamic degrees of freedom in excess
of the kinematic ones; the first “null” means it is placed in 0., 0., 0. with respect to the
global inertial frame, the “eye” means the rotation matrix that defines its orientation is
the identity 3 by 3 matrix, the three number sequence “0.,1.,0.” means that an initial
velocity of 1 m/s in the Y direction of the global inertial frame is set; the last “null”
means that the node has 0., 0., 0. angular velocity with respect to the global inertial
frame. Notice that the node is first labeled with a “1”. This is the name of the node.

Then we have a “body”

body: 1, 1, 1., null, eye;

which is also labeled “1” (the first occurrence) and it is attached to the structural node
“1” (the second occurrence). It has “1.” (i.e. unit) mass, which is located at the origin
of the reference frame defined by the node (the “null” takes the place of a possible
offset) and the inertia matrix at the offset is again the 3 by 3 identity matrix (“eye”).
Take a look at the input manual for all the ways a 3 by 3 matrix can be defined.

Finally, we have the force

8

http://www.aero.polimi.it/~masarati/MBDyn-input/manual/index.html

force: 1, absolute,
1, 0.,0.,1., null, const, -9.81;

also labeled as “1”, which is absolute (i.e. its direction does not change with the orien-
tation of the node), attached to node “1” and directed as axis 3 in the reference frame
defined by the node. It also has “null” arm with respect to the node, and the amplitude
is constant and equal to the gravity acceleration (the “const, ” is optional, as a number
is interpreted as a constant by default).

Notice how each statement is terminated by a semicolon “;”, each argument is
separated by a comma “,” while the card is separated from its arguments by a colon
“:”. The one-line comments start with a “#”, while the multiline comments follow the
C language style: “/* ... */”.

2.1 Execution
If we copy the above written code to a file called, say, “rigidbody”, and invoke

mbdyn -f rigidbody

after a while we obtain the results of the simulation in a set of files called “rigidbody.<ext>”.
In this case, the extensions will be:

• out for miscellaneous output

• mov for the kinematic output of the node

• ine for the dynamic output of the node

• frc for the output of the force

The first file (out) will be ignored at present. The second file (mov) will contain Nnodes
by Ntimesteps lines formatted as:

• the node label

• the three coordinates of the position of the node

• the three Euler-like angles that define the orientation of the node (following the
1, 2, 3 convention)

• the three components of the velocity of the node

• the three components of the angular velocity of the node

all the above mentioned quantities are expressed in the global inertial frame.

9

2.2 Plotting: gnuplot Example
Let’s move to some graphical tool to display scientific data, e.g. gnuplot (for more
details, see http://www.gnuplot.info/):

prompt> gnuplot

G N U P L O T
Linux version 3.7
patchlevel 0
last modified Thu Jan 14 19:34:53 BST 1999

Copyright(C) 1986 - 1993, 1998, 1999
Thomas Williams, Colin Kelley and many others

Type ‘help‘ to access the on-line reference manual
The gnuplot FAQ is available from

<http://www.uni-karlsruhe.de/˜ig25/gnuplot-faq/>

Send comments and requests for help to <info-gnuplot@dartmouth.edu>
Send bugs, suggestions and mods to <bug-gnuplot@dartmouth.edu>

Terminal type set to ’x11’
gnuplot>

To plot the movement of the rigid body, we can use:

gnuplot> plot "rigidbody.mov" using (1.e-3*$0):($4)

to see the vertical displacement of the node (note that there is no information about the
timing in the mov file, so we need to reconstruct the time axis from the line number,
multiplied by the time step), Figure 2.1, or

gnuplot> splot "rigidbody.mov" using 2:3:4

to see the trajectory in a 3D view, Figure 2.2.
The third file (ine), in the same format of the previous one, will contain the mo-

mentum, the momenta moment and their time derivatives for each dynamic node. The
fourth file (frc), in case only mechanical forces are used, will contain N f orces by
Ntimesteps lines formatted as:

• the force label

• the node label

• the magnitude of the force

• the three components of the force

• the three components of the position where the force is applied, in the global
reference frame

Other entities may contribute to the frc output file. They will be discussed later.

10

http://www.gnuplot.info/

Figure 2.1: Rigid body Z position

Figure 2.2: Rigid body trajectory

11

Chapter 3

Rigid Pendulum

A classic example is presented: the rigid pendulum problem is investigated with differ-
ent approaches.

Consider a rigid body with mass but without rotation inertia, constrained to main-
tain a constant distance from a grounded point and subject to gravity. In MBDyn such
a model can be implemented in different ways. In this tutorial some of the possible
ways will be used simultaneously.

The constraint can be implemented as a revolute hinge: in this case the mass per-
forms a revolute movement, so its inertia about the revolute axis must be zero; or it can
be a distance constraint: in this case the mass does not rotate provided the point the
distance is measured from is the CM of the mass.

The following cases will be considered:

1. the node is in the revolute constraint, and the mass is offset

2. the node is in the mass, and the revolute constraint is offset

3. a fixed distance constraint is imposed between the mass and the ground

There is at least another case which is not considered here: the node can be anywhere
in space, provided the mass and the revolute constraints are properly offset to result in
the appropriate places to model the pendulum. However, it is preferable to put nodes
in geometrically significant points to reduce postprocessing, because the kinematics of
the nodes are directly output; however an arbitrary node position and orientation with
respect to the physics of the problem is perfectly legal.

In MBDyn there’s no direct knowledge or implicit definition of a “ground node”.
There are special constraints that operate between one node and the ground. One of
these constraints is the “revolute pin”, which allows a node to rotate about one axis with
respect to ground. In the case of the distance constraint, which must operate between
two nodes, we will use a dummy node that will be grounded by a clamp constraint.
The solution of the dummy node is trivial: its position and orientation cannot change,
and the clamp constraint simply yields the reaction forces and couples that the system
exchanges with the ground at that point.

The input file for our simple example is:

12

begin: data;
problem: initial value; # the default

end: data;

begin: initial value;
initial time: 0.;
final time: 1.;
time step: 1.e-3;

max iterations: 10;
tolerance: 1.e-6;

end: initial value;

begin: control data;
structural nodes:

+1 # node in the constraint
+1 # node in the mass
+2 # distance: mass+ground

;
rigid bodies:

+1 # node in the constraint
+1 # node in the mass
+1 # distance: mass

;
joints:

+1 # node in the constraint: revolute
+1 # node in the mass: revolute
+2 # distance: distance+ground

;
gravity;

end: control data;

set: integer Pendulum = 1;
set: integer Mass = 2;
set: real M = 1.;
set: real L = .5;
set: real Omega0 = .2;

reference: Pendulum,
reference, global, null,
reference, global, eye,
reference, global, null,
reference, global, 0., Omega0, 0.;

reference: Mass,
reference, Pendulum, 0., 0., -L,
reference, Pendulum, eye,

13

reference, Pendulum, null,
reference, Pendulum, null;

begin: nodes;
structural: 1000+Pendulum, dynamic,

reference, Pendulum, null,
reference, Pendulum, eye,
reference, Pendulum, null,
reference, Pendulum, null;

structural: 2000+Mass, dynamic,
reference, Mass, null,
reference, Mass, eye,
reference, Mass, null,
reference, Mass, null;

no dynamic dofs (it will be fully grounded)
structural: 3000+Pendulum, static,

reference, Pendulum, null,
reference, Pendulum, eye,
reference, Pendulum, null,
reference, global, null;

"global" means no angular velocity!

structural: 3000+Mass, dynamic,
reference, Mass, null,
reference, Mass, eye,
reference, Mass, null,
reference, global, null;

"global" means no angular velocity!
end: nodes;

begin: elements;
body: 1000+Mass, 1000+Pendulum,

M,
reference, Mass, null,
null; /* The problem is non-singular

* because of the constraint */
joint: 1000+Mass, revolute pin,

1000+Pendulum,
reference, Pendulum, null,
hinge, reference, Pendulum,

1, 1.,0.,0., 3, 0.,1.,0.,
reference, Pendulum, null,
hinge, reference, Pendulum,

1, 1.,0.,0., 3, 0.,1.,0.;

14

body: 2000+Mass, 2000+Mass,
M,
reference, Mass, null,
null; /* The problem is non-singular

* because of the constraint */
joint: 2000+Mass, revolute pin,

2000+Mass,
reference, Pendulum, null,
hinge, reference, Pendulum,

1, 1.,0.,0., 3, 0.,1.,0.,
reference, Pendulum, null,
hinge, reference, Pendulum,

1, 1.,0.,0., 3, 0.,1.,0.;

body: 3000+Mass, 3000+Mass,
M,
reference, Mass, null,
eye; # Otherwise the problem will be singular ...

joint: 3000+Pendulum, clamp,
3000+Pendulum, node, node;

joint: 3000+Mass, distance,
3000+Pendulum,
3000+Mass,
const, L;

gravity: 0., 0., -1., const, 9.81;
end: elements;

Let’s have a look at each portion of the input separately.
First we notice the structural nodes card in the control data block:

structural nodes:
+1 # node in the constraint
+1 # node in the mass
+2 # distance: mass+ground

;

Every time a numeric data is expected in a field, a mathematical interpreter is invoked.
The rules of the interpreter are rather sophisticated; let’s skip over them and use the
interpreter in a trivial manner. As a result, the number “4” (the total number of nodes
we expect to read) is split in the sum of each contribution with a one-line remark
to increase the readability of the statement. The same applies to the following rigid
bodies and joints cards.

We introduced two new types of elements: the joints and the gravity. The latter is
the first example of a statement made of a card with no arguments.

Let’s now go to a seemingly unstructured block of statements:

15

set: integer Pendulum = 1;
set: integer Mass = 2;
set: real M = 1.;
set: real L = .5;
set: real Omega0 = .2;

reference: Pendulum,
reference, global, null,
reference, global, eye,
reference, global, null,
reference, global, 0., Omega0, 0.;

reference: Mass,
reference, Pendulum, 0., 0., -L,
reference, Pendulum, eye,
reference, Pendulum, null,
reference, Pendulum, null;

these statements appear out of any structured block because they may appear anywhere,
since they are not related to the analysis or the model, but are directly interpreted by
the parser; they represent helpers the parser allows to ease the input of the data.

The first group of statements represents declarations and definitions of variables
that will be later used by the parser. Variables are typed (integer or real) scalars.
A variable must always be declared before it’s first used. The declaration may occur
anywhere.

The second group of statements represents the declaration and definition of refer-
ence frames that can be used when placing entities around in the model. Each frame
is defined by the three coordinates, the orientation matrix, the three components of the
velocity and the three components of the angular velocity. It may be defined both in
absolute coordinates (the default) or referred to other reference frames in a hierarchical
manner. The hierarchy is discarded as soon as the reference is used, and the data is
transformed in the global/local frame as appropriate. The hierarchy is preserved across
runs by maintaining the symbolic form of the input.

The Pendulum reference frame is placed in the origin of the global (builtin) frame
and oriented as the global frame itself. However it has an initial angular velocity about
axis 2 that represents the initial conditions of our analysis. The Mass reference frame
is placed relative to the Pendulum reference frame at a distance L in the negative
direction of axis 3. As a result, the Mass reference frame has the angular velocity of
the Pendulum reference frame, plus a velocity in the direction of axis 1 of magnitude
-Omega0*L.

Let’s now look at each example separately.
In the first case, the node is written as:

structural: 1000+Pendulum, dynamic,
reference, Pendulum, null,
reference, Pendulum, eye,
reference, Pendulum, null,
reference, Pendulum, null;

16

which means that the node, called “1000+Pendulum”, namely “1001”, is placed in the
origin (“null”) of Pendulum reference and is oriented as the reference itself. It also
inherits the velocities of the reference, so it is rotating with angular velocity Omega0
about axis 2. An equivalent definition without the use of references would have been:

structural: 1000+Pendulum, dynamic,
null,
eye,
null,
0., Omega0, 0.;

where the global reference frame is implicitly assumed when defining the configuration
of a node.

The corresponding rigid body is written as:

body: 1000+Mass, 1000+Pendulum,
M,
reference, Mass, null,
null;

which means that a rigid body called “1000+Mass”, i.e. “1002”, is attached to node
“1000+Pendulum”, i.e. ”1001”; the mass is “M”, i.e. “1.”, and this mass is offset from
the node. The position of the mass expressed in reference frame Mass is given; it
is automatically transformed in an offset by transforming it in the global frame, sub-
tracting the position of the node, and transforming the result in the reference frame of
the node. A null inertia matrix is give because we want to neglect it (i.e. consider a
point with mass). As the remark says, there’s no danger to drive the problem singular,
because the constraint that will be added will make the problem statically determined.
An equivalent definition with no frames would have been:

body: 1000+Mass, 1000+Pendulum,
M,
0., 0., -L,
null;

where the offset is input in the reference frame of the node (i.e. a local frame).
Finally, the corresponding joint is written as:

joint: 1000+Mass, revolute pin,
1000+Pendulum,

reference, Pendulum, null,
hinge, reference, Pendulum,

1, 1.,0.,0., 3, 0.,1.,0.,
reference, Pendulum, null,
hinge, reference, Pendulum,

1, 1.,0.,0., 3, 0.,1.,0.;

which means that a joint called “1000+Mass” (labels need be unique only within an en-
tity type) representing a “revolute pin” (“revolute” means it allows rotation about one

17

1, 1.,.5,0., 3, 0.,0.,1.

xx

yy

zz

11

33
22

Figure 3.1: Vectors 1 and 3 are given in the global XYZ frame to define frame 123

specific axis only; “pin” means that it connects one node to the ground) is connected
to a node called “1000+Pendulum” and to the ground itself. The connection, with re-
gards to the node, is in the origin of the Pendulum reference frame, while the absolute
position of the pin is again in the absolute position of the origin of the Pendulum
reference. The orientation of the joint (which means the orientation of the axis about
which the joint allows rotation) is axis 2 of the Pendulum reference frame. The orien-
tation is specified by giving two arbitrary non-parallel vectors, as shown in Figure 3.1.
The first is taken as is and becomes the direction it was named after (“1” in the case at
hand); the other concurs in determining the remaining direction by performing a vector
multiplication (being i, j and k the unit vectors of the coordinate axes, if i and j are
given, k is determined by multiplying i cross j). There are other means to specify an
orientation; see the input manual for details.

The second case is straightforward.
The third case is slightly different because there is no orientation constraint. How-

ever the problem is a little more difficult because we need to generate a grounded node
(in a straightforward manner, though) to use an imposed distance joint.

Finally, notice how the gravity has been introduced: its orientation is defined first;
then its amplitude is set to the desired (constant!) value.

The interpretation of the results requires some care. Cases 2 and 3 should yield
the same results in terms of displacements, because nodes “X+Mass” are coincident.
On the contrary, the results of case 1 should be transformed to the position of the
mass to compare with the others. However cases 1 and 2 should match with regard to
orientation and angular velocity.

A new output file, with extension jnt, appears. It contains the output of the joints
with the format:

• the joint label

• the three components of the joint reaction force in the local frame

18

• the three components of the joint reaction couple in the local frame

• the three components of the joint reaction force in the global frame

• the three components of the joint reaction couple in the global frame

• optional extra data dependent on the joint type

The revolute pin joints add the three components of the rotation and of the
angular velocity (only the one about axis 3 can be non null, of course). The rotation is
expressed by means of the Euler-like angles in the 1, 2, 3 sequence.

19

Chapter 4

Rigid Chain

Rigid four link chain falling after 1s, illustrating the driven element feature. See file
chain.

20

Chapter 5

Cantilever Beam

This example is meant to introduce flexible elements in a straightforward manner. A
simple problem, made of a cantilever beam loaded at the free end, is presented. A
single three-node beam element is considered first. The beam element is modeled by
means of an original finite volume approach described in [FV-AIAA].

The input file for our example is:

begin: data;
problem: initial value;

end: data;

begin: initial value;
initial time: 0.;
final time: 1.;
time step: 1.e-3;

max iterations: 10;
tolerance: 1.e-5;

end: initial value;

begin: control data;
structural nodes:

+1 # clamped node
+2 # other nodes

;
rigid bodies:

+2 # mass of other nodes
;
joints:

+1 # clamp
;
beams:

21

file:../../publications.html#FV-AIAA

+1 # the whole beam
;
forces:

+1 # loads the beam
;

end: control data;

set: real m = 1.;
set: real j = 1.e-2;
set: real L = .5;

begin: nodes;
structural: 1, static,

null,
eye,
null,
null;

structural: 2, dynamic,
L/2., 0., 0.,
eye,
null,
null;

structural: 3, dynamic,
L, 0., 0.,
eye,
null,
null;

end: nodes;

begin: elements;
joint: 1, clamp, 1, node, node;

body: 2, 2,
(L/2.)*m,
null,
diag, (L/2.)*j, 1./12.*(L/2.)ˆ3*m, 1./12.*(L/2.)ˆ3*m;

body: 3, 3,
(L/4.)*m,
-(L/8.), 0., 0.,
diag, (L/4.)*j, 1./12.*(L/4.)ˆ3*m, 1./12.*(L/4.)ˆ3*m;

beam: 1,
1, null,

22

2, null,
3, null,
eye,
linear elastic generic,

diag, 1.e9, 1.e9, 1.e9, 1.e4, 1.e4, 1.e5,
same,
same;

/*
constant absolute force in node 3
force: 3, absolute,

3, 0., 0., 1., null,
const, 100.;

*/

/*
constant follower force in node 3
force: 3, follower,

3, 0., 0., 1., null,
const, 100.;

*/

set: real initial_time = 0.;
set: real frequency = 10./pi; # radians
set: real amplitude = 100.;
set: real initial_value = 0.;
absolute force in node 3 with different amplification factors
force: 3, absolute,

3, 0., 0., 1., null,
array, 2,

sine, initial_time, frequency, amplitude,
forever, initial_value,

cosine, initial_time+.1, frequency/2., amplitude,
half, initial_value;

end: elements;

Let’s have a look at each portion of the input separately.
We will skip over the node definitions because there’s nothing new with respect

with the previous cases. Only note that the three nodes are equally spaced from {0,0,0}
to {L,0,0}.

Similarly, there’s nothing special in rigid body elements; they account for lumped
inertia of each portion in which the beam is divided.

The three-node beam element, with label 1, is connected to nodes 1, 2, and 3 with
no offset. The properties of the beam are defined at two points that are nearly half-way
between the nodes (exactly at 1/

√
3 from the middle node, according to the mentioned

23

reference, which corresponds the the second-order Gauss integration points). At these
points, the material properties are defined in terms of a 6×6 constitutive law, preceded
by an orientation matrix that defines the initial orientation of the material frame. In
this example, the orientation is eye, that is the material frame and the global frame
coincide. Note that in the material frame axis 1 lies along the axis of the beam, and
axes 2 and 3 define the section of the beam. A linear elastic generic constitutive law is
used. This means that the internal forces are computed by multiplying the generalized
strains by a constant matrix. Internal forces may have non-null initial value, which is
added to the value computed by the constitutive law. Moreover, an inelastic strain can
be added to the elastic strains, which can vary during the simulation. See the input
manual for further details.

The force element has been previously discussed. In this case there are a few alter-
natives; the first two cases differ in that one applies a transverse force that is absolute,
i.e. does not change orientation while the node is applied to rotates; conversely, the
other is follower, i.e. rotates with the node.

The last alternative allows different amplification factors, which are linearly com-
bined. For a more comprehensive description of the available drive functions, refer
to the input manual .

Let’s now see how one can automatically generate a repetitive model exploiting
some twirks of MBDyn ’s input format.

Consider a model made by a string of N three-node beam elements. The nodes
related to the i-th element, with i = 2,4, . . . ,2N, are i−1, i, and i+1.

So we can define a subfile, called beam.nod:

structural: curr_elem, dynamic,
(curr_elem - 1) * dL, 0., 0.,
eye,
null,
null;

structural: curr_elem + 1, dynamic,
curr_elem * dL, 0., 0.,
eye,
null,
null;

and another subfile, called beam.elm:

body: curr_elem, curr_elem,
(dL/2.)*m,
null,
diag, (dL/2.)*j, 1./12.*(dL/2.)ˆ3*m, 1./12.*(dL/2.)ˆ3*m;

body: curr_elem + 1, curr_elem + 1,
(dL/2.)*m,
null,
diag, (dL/2.)*j, 1./12.*(dL/2.)ˆ3*m, 1./12.*(dL/2.)ˆ3*m;

24

http://www.aero.polimi.it/~masarati/MBDyn-input/manual/index.html
http://www.aero.polimi.it/~masarati/MBDyn-input/manual/index.html
http://www.aero.polimi.it/~masarati/MBDyn-input/manual/index.html
file:../examples/beam.nod
file:../examples/beam.elm

beam: curr_elem,
curr_elem - 1, null,
curr_elem, null,
curr_elem + 1, null,
eye,
linear elastic generic,

diag, 1.e9, 1.e9, 1.e9, 1.e4, 1.e4, 1.e5,
same,
same;

that model a single-element portion of the beam. Then the input file, for a given number
of elements, becomes:

begin: data;
problem: initial value;

end: data;

begin: initial value;
initial time: 0.;
final time: 1.;
time step: 1.e-3;

max iterations: 10;
tolerance: 1.e-6;

end: initial value;

set: integer N = 5;

begin: control data;
structural nodes:

+1 # clamped node
+2*N # other nodes

;
rigid bodies:

+2*N # mass of other nodes
;
joints:

+1 # clamp
;
beams:

+N # the whole beam
;
forces:

+1 # loads the beam
;

end: control data;

25

set: real m = 1.;
set: real j = 1.e-2;
set: real L = .5;
set: real dL = L/N;

set: integer curr_elem;

begin: nodes;
structural: 1, static,

null,
eye,
null,
null;

set: curr_elem = 2;
include: "beam.nod";
set: curr_elem = 4;
include: "beam.nod";
set: curr_elem = 6;
include: "beam.nod";
set: curr_elem = 8;
include: "beam.nod";
set: curr_elem = 10;
include: "beam.nod";

end: nodes;

begin: elements;
joint: 1, clamp, 1, node, node;

set: curr_elem = 2;
include: "beam.elm";
set: curr_elem = 4;
include: "beam.elm";
set: curr_elem = 6;
include: "beam.elm";
set: curr_elem = 8;
include: "beam.elm";
set: curr_elem = 10;
include: "beam.elm";

constant follower force in node 3
force: 2 * N + 1, follower,

2 * N + 1, 0., 0., 1., null,
cosine, 0., pi/2., 10., half, 0.;

end: elements;

26

Note that in this case the last node receives a body with an erroneous inertia; this can
be easily worked around with little extra work.

When a full scripting language will be added, the same effect will be available with
loop control.

27

Chapter 6

Piezo-electrically Actuated
Beam

The previous problems can be complicated a bit by adding a piezoelectric shunt that
dampens the free vibrations of the beam. All beam elements in MBDyn can include
piezoelectric actuators defined by means of a linear piezoelectric constitutive law. It
determines an inelastic contribution to the internal forces proportional to the value of
the abstract nodes that represent the voltage across the piezoelectric patches.

The model described in the input file cantilever1 is modified by

• adding an abstract node that represents the voltage across the piezoelectric patches:

abstract nodes:
+1 # piezo electrode

;
...
abstract:

11;

• adding a spring support element with unit stiffness that grounds the ab-
stract node

genels:
+1 # electrode shunt

;
...
genel: 12, spring support,

11, abstract, algebraic,
linear elastic, 1.;

• adding the piezoelectric constitutive law to the beam element that applies a bend-
ing moment proportional to the voltage

28

beam: 1,
1, null,
2, null,
3, null,
eye,
linear elastic generic,

diag, 1.e9, 1.e9, 1.e9, 1.e4, 1.e4, 1.e5,
same,
same,
piezoelectric actuator, 1,

11,
0., 0., 0., 0., 1e0, 0.,

same;

• adding a force that loads the abstract node with a value proportional to the verti-
cal velocity of the end of the beam, to shunt the circuit.

force: 11, abstract,
11, abstract,
dof, 3, structural, 3, differential,

linear, 0., -8e1;

The complete input file is in cantilever1piezo; Figure 6.1 illustrates the vertical
velocity of the end of the beam with and without the shunt during the initial transient.

29

0

0.0005

0.001

0.0015

0.002

0.0025

0 20 40 60 80 100

V
e

lo
c
it
y
 [

m
/s

]

Time [s]

cantilever1
cantilevel1piezo

Figure 6.1: Transverse velocity of the free end of a cantilevered beam, with and without
the piezoelectric shunt

30

Chapter 7

Hydraulically Actuated Beam

This problem is more involved than the previous ones, because it introduces a multifield
problem, taken from the literature (Ref. 1).

The model consists in a beam, pinned at one end and free at the other, actuated by
means of a hydraulic actuator pinned to the ground and to the beam at one quarter from
the pinned end, oriented 45o from the beam.

The actuator is operated through a simple hydraulic circuit, made of a pipeline,
with an orifice right before the actuator’s chamber. An imposed flow is input at the free
end of the pipeline.

The input file for our example is:

/*
Jari M\"{a}kinen, Asko Ellman, and Robert Pich\’{e},
"Dynamic Simulation of Flexible Hydraulic-Driven Multibody
Systems Using Finite Strain Beam Theory",
submitted to Fifth Scandinavian International Conference
on Fluid Power, Link\"{o}ping, 1997.

Problem:

- Pinned-free beam operated by an actuator pinned at
a quarter beam.

Data:

Beam:
- linear density: 13. kg/m
- flexural inertia per unit length: 1.7e-3 kgm
- length: 2. m
- axial stiffness: 3.36e8 N
- bending stiffness: 8960. Nmˆ2
- transverse shear stiffness: 1.47e8 N

31

- tip mass: 20. Kg
- actuator orientation: 45. deg

Fluid:
- kinematic viscosity: 8.e-5 mˆ2/s
- density: 870. kg/mˆ2
- sound celerity: 1.4e3 m/s

Pipe:
- length: 20. m
- radius: 6.e-3 m

Orifice:
- diameter: 6.e-3 m
- coefficient: 0.6
- transition Reynolds number: 1000.

Actuator:
- area: 0.01 mˆ2
- initial volume: 1.e-3 mˆ3
- critical displacement (friction): 0.5e-3 m
- static force: 100. N
- dynamic friction coefficient: 2500. N s/m

Note:

- no gravity
- flow starts from 0., grows linearly to 2.e-3 mˆ3/s

in one second, poi decreases linearly to 0. in another
second.

*/

begin: data;
problem: initial value;

end: data;

begin: initial value;
set: real dt = 1.e-3;
time step: dt;
initial time: 0.;
final time: 50.;

method: ms, .6, .6;

max iterations: 50;
tolerance: 1.e-5;

32

derivatives coefficient: 1.e-6;
derivatives max iterations: 20;
derivatives tolerance: 1.e-6;

newton raphson: modified, 4;
end: initial value;

begin: control data;
skip initial joint assembly;

structural nodes:
1 # nodo di inizio, messo a terra con cerniera piana

+1 # nodo di messa a terra martinetto
+1 # nodo di collegamento tra martinetto e trave
+8 # nodi delle quattro travi

;

joints:
1 # messa a terra della trave con giunto piano

+1 # messa a terra dell’attuatore con giunto sferico
+1 # giunto inline per attuatore
+1 # giunto prismatic per attuatore
+1 # collegamento tra attuatore e trave
+1 # dissipazione viscosa nel cilindro

;

rigid bodies:
9 # nodi della trave

;

beams:
4 # 4 elementi per la trave

;

hydraulic nodes:
1 # camera superiore, vuota

+1 # camera inferiore
+1 # inizio conduttura
+1 # termine conduttura

;

hydraulic elements:
1 # attuatore

+1 # orifizio
+1 # tubo

33

;

genels:
1 # pressione imposta nella camera superiore

;

forces:
1 # portata imposta all’inizio della conduttura

;
end: control data;

set: integer Beam = 100;
set: integer Actuator = 200;

set: integer Upper_ch = 1100;
set: integer Lower_ch = 1200;
set: integer Pipe_start = 1300;
set: integer Pipe_end = 1400;
set: integer Fluid = 5000;

set: real L = 2.;
set: real EA = 3.36e8;
set: real EJy = 8.96e3;
set: real GAz = 1.47e8;
set: real m = 13.;
set: real J = 1.7e-3;
set: real M = 20.;
set: real damp = 1.8e-3;

set: real fi = 1./sqrt(3.);
set: real fe = 1.-fi;

set: real dm = m*L/8.;
set: real dmi = dm*fi;
set: real dme = dm*fe;
set: real dli = L/8.*fi;
set: real dle = L/8.*fe;

set: real p0 = 1.01325e5;
set: real rho = 870.;
set: real c = 1.4e3;
set: real beta = cˆ2*rho;
set: real nu = 8.e-5;
set: real mu = nu*rho;

reference: Beam,

34

reference, global, null,
reference, global, eye,
reference, global, null,
reference, global, null;

reference: Actuator,
reference, Beam, 0.,0.,-1./4.*L,
reference, Beam, 2, 0.,1.,0., 3, 1.,0.,1.,
reference, Beam, null,
reference, Beam, null;

begin: nodes;
beam nodes
structural: Beam, dynamic,

reference, Beam, null,
reference, Beam, eye,
reference, Beam, null,
reference, Beam, null;

structural: Beam+1, dynamic,
reference, Beam, 1./8.*L,0.,0.,
reference, Beam, eye,
reference, Beam, null,
reference, Beam, null;

structural: Beam+2, dynamic,
reference, Beam, 2./8.*L,0.,0.,
reference, Beam, eye,
reference, Beam, null,
reference, Beam, null;

structural: Beam+3, dynamic,
reference, Beam, 3./8.*L,0.,0.,
reference, Beam, eye,
reference, Beam, null,
reference, Beam, null;

structural: Beam+4, dynamic,
reference, Beam, 4./8.*L,0.,0.,
reference, Beam, eye,
reference, Beam, null,
reference, Beam, null;

structural: Beam+5, dynamic,
reference, Beam, 5./8.*L,0.,0.,
reference, Beam, eye,
reference, Beam, null,
reference, Beam, null;

structural: Beam+6, dynamic,
reference, Beam, 6./8.*L,0.,0.,
reference, Beam, eye,
reference, Beam, null,

35

reference, Beam, null;
structural: Beam+7, dynamic,

reference, Beam, 7./8.*L,0.,0.,
reference, Beam, eye,
reference, Beam, null,
reference, Beam, null;

structural: Beam+8, dynamic,
reference, Beam, 8./8.*L,0.,0.,
reference, Beam, eye,
reference, Beam, null,
reference, Beam, null;

actuator nodes
structural: Actuator, static,

reference, Actuator, null,
reference, Actuator, eye,
reference, Actuator, null,
reference, Actuator, null;

structural: Actuator+1, dynamic,
reference, Beam, 2./8.*L,0.,0.,

reference, Actuator, eye,
reference, Beam, null,
reference, Beam, null;

upper chamber
hydraulic: Upper_ch, p0;

lower chamber
hydraulic: Lower_ch, p0;

pipe start
hydraulic: Pipe_start, p0;

pipe end
hydraulic: Pipe_end, p0;

end: nodes;

begin: elements;
beam ground constraint
joint: Beam, revolute pin,

Beam, reference, node, null,
hinge, reference, node, 1, 1.,0.,0., 3, 0.,1.,0.,
reference, Beam, null,
hinge, reference, Beam, 1, 1.,0.,0., 3, 0.,1.,0.;

actuator ground point

36

joint: Actuator, revolute pin,
Actuator, reference, node, null,
hinge, reference, node, 1, 1.,0.,0., 3, 0.,1.,0.,
reference, Actuator, null,
hinge, reference, Actuator, 1, 1.,0.,0., 3, 0.,1.,0.;

actuator constraints
joint: Actuator+1, inline,

Actuator, reference, Actuator, null,
reference, Actuator, eye,
Actuator+1;

joint: Actuator+2, prismatic,
Actuator, Actuator+1;

joint: Actuator+3, rod,
Actuator, Actuator+1, from nodes,
linear viscous, 2.5e3;

constraint between beam and actuator
joint: Actuator+10, spherical hinge,

Actuator+1, reference, node, null,
Beam+2, reference, node, null;

beam elements
beam: Beam+1,

Beam, null,
Beam+1, null,
Beam+2, null,
reference, Beam, eye,
linear viscoelastic generic,

diag, EA, 1.e9, GAz, 1.e6, EJy, 1.e6,
proportional, damp,
same,
same;

beam: Beam+2,
Beam+2, null,
Beam+3, null,
Beam+4, null,
reference, Beam, eye,
linear viscoelastic generic,

diag, EA, 1.e9, GAz, 1.e6, EJy, 1.e6,
proportional, damp,
same,
same;

beam: Beam+3,
Beam+4, null,

37

Beam+5, null,
Beam+6, null,
reference, Beam, eye,
linear viscoelastic generic,

diag, EA, 1.e9, GAz, 1.e6, EJy, 1.e6,
proportional, damp,
same,
same;

beam: Beam+4,
Beam+6, null,
Beam+7, null,
Beam+8, null,
reference, Beam, eye,
linear viscoelastic generic,

diag, EA, 1.e9, GAz, 1.e6, EJy, 1.e6,
proportional, damp,
same,
same;

beam inertia
body: Beam, Beam,

dme,
reference, node, dle/2.,0.,0.,
diag, 1., J*dle+1./12.*dme*dleˆ2, 1.;

body: Beam+1, Beam+1,
2.*dmi,
reference, node, null,
diag, 1., 2.*J*dli+1./12.*(2.*dmi)*(2.*dli)ˆ2, 1.;

body: Beam+2, Beam+2,
2.*dme,
reference, node, null,
diag, 1., 2.*J*dle+1./12.*(2.*dme)*(2.*dle)ˆ2, 1.;

body: Beam+3, Beam+3,
2.*dmi,
reference, node, null,
diag, 1., 2.*J*dli+1./12.*(2.*dmi)*(2.*dli)ˆ2, 1.;

body: Beam+4, Beam+4,
2.*dme,
reference, node, null,
diag, 1., 2.*J*dle+1./12.*(2.*dme)*(2.*dle)ˆ2, 1.;

body: Beam+5, Beam+5,
2.*dmi,
reference, node, null,
diag, 1., 2.*J*dli+1./12.*(2.*dmi)*(2.*dli)ˆ2, 1.;

body: Beam+6, Beam+6,
2.*dme,

38

reference, node, null,
diag, 1., 2.*J*dle+1./12.*(2.*dme)*(2.*dle)ˆ2, 1.;

body: Beam+7, Beam+7,
2.*dmi,
reference, node, null,
diag, 1., 2.*J*dli+1./12.*(2.*dmi)*(2.*dli)ˆ2, 1.;

body: Beam+8, Beam+8,
condense, 2,
dme,
reference, node, -dle/2.,0.,0.,
diag, 1., J*dle+1./12.*dme*dleˆ2, 1.,
M,
reference, node, null,
null;

fluid
hydraulic fluid: Fluid, linear compressible,

density, rho, beta, p0,
viscosity, mu;

actuator
hydraulic: Actuator, actuator,

Lower_ch, Upper_ch, # hydraulic nodes
Actuator, null, # structural nodes
Actuator+1, reference, Actuator, 0.,0.,.1,
direction, reference, Actuator, 0.,0.,1.,
0.01, # area 1
0.01, # area 2
L/2., # actuator length
fluid, reference, Fluid,
fluid, uncompressible, density, 1.e-12, viscosity, mu;

orifice
hydraulic: Actuator+1, orifice,

Pipe_end, Lower_ch,
12.e-3,
pi*(6.e-3/2.)ˆ2,
fluid, reference, Fluid;

pipe
hydraulic: Actuator+2, dynamic pipe,

Pipe_start, Pipe_end,
12.e-3,
pi*6.e-3ˆ2,
fluid, reference, Fluid;

39

upper chamber atmospheric pressure
genel: Upper_ch, clamp,

Upper_ch, hydraulic,
const, p0;

force: 1, abstract, Pipe_start, hydraulic,
double ramp, -0.002*rho, 0., 1., 0.002*rho, 1., 2., 0.;

end: elements;

40

Chapter 8

Modal Body

8.1 Introduction
The modal body represents a very versatile manner to introduce the modeling of the
essential dynamics of very complex deformable components, with some restrictions,
into the multibody modeling environment. In essence, the dynamics of a deformable
component is described as a linear combination of a reduced set of shapes and the
related generalized mass, damping and stiffness matrices, plus some terms that describe
selected nonlinearities in the inertia forces. This linear change in configuration with
respect to the reference condition is superimposed to the finite motion of a regular
multibody node, that accounts for the rigid body motion of the deformable component.

Modal bodies are classified as joints in MBDyn, although they bring together fea-
tures of bodies (inertia forces) and of joints (connections between multibody nodes).

The interface between a modal element and the multibody environment is defined
by means of regular multibody nodes that are “clamped” to the corresponding FEM
nodes; as a consequence, the modal element can naturally connect to any multibody
entity that can be connected to regular multibody structural nodes. The interface nodes
must be separately defined in the control data and in the nodes sections. Since
they are rigidly attached to the modal element, static multibody structural nodes
can be used, unless some inertia is to be added in the multibody domain; in that case, a
dynamic multibody structural node must be used.

This tutorial uses the two hand-made FEM data files illustrated in Appendix A of
the input manual to perform some basic analysis with trivial static and dynamic modal
models. More sophisticated modal models can be manually prepared, or generated
by means of NASTRAN following the procedure detailed in Appendix A of the input
manual, or even generated from any FEM analysis software by manipulating the output
as illustrated in the same reference.

41

8.2 Kinematics

8.2.1 The modal Node
The modal joint may be either grounded or connected to a modal node, a special
type of structural node1 that accounts for the rigid body motion of the element.
Based on how the deformation shapes have been obtained, this node may or may not
correspond to a specific point in the FEM model. For example, if the deformation
shapes have null displacement and rotation in the geometrical point corresponding to
the location of the modal node, the approach is called attached, and the motion of the
modal node corresponds to that of the FEM point it is attached to. On the contrary,
if the deformation shapes contain some displacement and rotation of that point, the
modal node describes a reference motion of the point it is attached to; a special case,
which can be easily generalized, is that of deformation shapes that are orthogonal to
eachother with respect to inertia matrix, including the rigid body motion shapes. In this
case, the modal node is attached to the modal element in the center of mass of the
undeformed body, and describes the reference motion of that point.

8.2.2 Rigid Body Motion
When using the modal element, one must not include any rigid body motion shape,
because, in order to handle finite displacements and rotations, the rigid body motion
must be accounted for by the modal node.

In some applications, rigid body motion must be considered; it is the case, for
example, of aerospace models, where an aircraft’s rigid body motion is not constrained.
The problem may include additional rigid body degrees of freedom; in an aircraft, for
example, this is the case of the ailerons and in general of control surfaces; in a robot
manipulator, this is the case of each deformable link. For those problems, the best
modeling approach is to use separate modal elements, or combinations of modal and
rigid elements, for each body, and connect them by means of multibody joints at
interface multibody nodes.

8.2.3 Shape Selection
The set of shapes that is used as a reduced basis does not have to be selected from the
normal modes of the structure. Different choices are available, which may have pros
and cons. It is the user’s judgement that determines what is appropriate for a given
model and a given problem. Guidelines and suggestions are proposed.

A criterion is to try to use as little shapes as possible, to minimize the computa-
tional effort. The selected basis should be able to describe the overall motion of the
structure in the range of frequencies of interest, and, at the same time, to describe local
effects related to the way the structure is constrained and loaded. To take care of the
frequencies of interest, the normal modes usually are a good choice, but they may give

1A regular dynamic node could have been used; however, for internal implementation reasons, lin-
ear and angular velocities have been preferred over momentum and momenta moments as used for regular
dynamic nodes.

42

poor results in terms of describing local effects. So it is a good practice to augment
the normal modes by means of special shapes that are able to describe selected local
behaviors.

• Free normal modes. They may represent a valid choice when the structure is not
constrained and not loaded in specific locations, or when the local effects are of
little interest. Otherwise they may not be enough (i.e. a number of modes much
larger than those in the frequency range of interest may be required to yield an
acceptable description of the local effects).

• Constrained normal modes. The same discussion above applies, but the struc-
ture is naturally constrained. In this case, the modes of the constrained structure
are computed and used as a basis.

• Normal modes augmented by interface shapes (Craig-Bampton). This pro-
cedure, also known in the field of structural analysis as “substructuring”, consists
in partitioning the problem

Kx = f (8.1)

in “omitted” and “preserved” nodes[
Koo Kop
K po K pp

]{
xo
xp

}
=

{
f o
f p

}
(8.2)

The normal modes of the “omitted” subsystem, i.e. the eigenvectors that are
solutions of the eigenproblem(

λ
2Moo +Koo

)
xo = 0 (8.3)

or likely a subset of them, is augmented by a set of static shapes obtained by
independently setting to unit each of the “preserved” degrees of freedom, namely[

Xo
X p

]
=

[
−K−1

oo Kop
I

]
(8.4)

This approach yields as much generality as possible; however, the selected shapes
are purely static, and may not be optimal. Moreover, static shape for all the “pre-
served” degrees of freedom must be used, otherwise an overconstrained basis
may result, since any “preserved” degree of freedom whose shape is not used
will always be exactly zero. More details are available in (2).

• Normal modes augmented by complement interface shapes. In many appli-
cations, interface nodes are not loaded in an arbitrary manner; on the contrary,
there may exist very well defined load patterns. For example, when analyzing
the touch down of an aircraft, a modal model of the aircraft may be connected
to a multibody model of the landing gear. In many cases, only the vertical com-
ponent of the force transmitted by the landing gear to the structure through the
attachments is relevant for the coupled aircraft/gear model. An approach that
represents the complement of the above consists in augmenting the selection of

43

“omitted” normal modes with a set of static shapes computed by applying unit
loads to the “preserved” degrees of freedom, namely[

Xo
X p

]
c
=

[
−K−1

oo Kop
I

](
K pp−K poK−1

oo Kop
)−1

(8.5)

or [
Xo
X p

]
c
=

[
Xo
X p

](
K pp−K poK−1

oo Kop
)−1

(8.6)

which represent a subset of the compliance matrix. In this case, if only the subset
of static shapes corresponding to the relevant load patterns is used, the basis may
be as representative as the above with a smaller number of shapes.

When using this approach, it might be appropriate to augment the normal modes
of the entire structure, instead of those of the “omitted” subproblem, significantly
when only a portion of the interface compliance coefficients is used.

• Inertia relief. The static shapes illustrated above are obtained as solutions of
a static problem. However, they are subsequently used as a basis to describe
the behavior of a dynamic system, although they do not contain any information
about the dynamics of the system.

A simple, but in many cases effective means to introduce some information
about the system dynamics into those static shapes consists in introducing what
is called inertia relief. It consists in adding inertia forces resulting from the rigid-
body accelerations required to balance the external loads applied to the system.

Consider the problem that led to Eq. (8.5). Each shape results from the appli-
cation of unit force components in each of the selected directions of the loaded
nodes. As a consequence, the problem in most cases is not self-balanced. The
loads can be corrected by a contribution

f i =−MXRα, (8.7)

where M is the mass matrix, XR is the matrix of the rigid-body mode shapes and
α is a vector of unknown rigid-body accelerations.

The accelerations α are computed by imposing that the overall force and moment
vanishes, namely

XT
R (f + f i) = 0. (8.8)

This yields

α =
(
XT

RMXR
)−1

XT
R f . (8.9)

The original forces f =
[
0T IT

]T , corrected by the inertia relief contribution,
yield

xci = K−1
(

I−MXR
(
XT

RMXR
)−1

XT
R

)[
0
I

]
(8.10)

44

We can define

Pi = I−MXR
(
XT

RMXR
)−1

XT
R (8.11)

as the non-orthogonal inertia relief projection matrix, such that

xci = K−1Pi

[
0
I

]
. (8.12)

The rationale behind inertia relief is that all load patterns must satisfy global
equilibrium, by means of either constraint reactions or inertia forces. If a free
body is considered, no constraint reactions may exist; thus the static load must
be balanced by other loads, including inertia forces associated to rigid body mo-
tion. If no inertia relief is used, a combination of the free modes and of the static
shapes will concur in generating a solution that balances the non-balanced load,
but this will only eventually converge to the correct solution, and will require
many shapes to workaround a defect in the original selection of the shapes them-
selves. This is exact for free bodies in vacuum, where only rigid body inertia
forces can restore equilibrium. However, common practice showed that inertia
relief is beneficial also in cases that depart from those assumptions, whenever
rigid body motion and rigid body inertia forces participate in restoring the dy-
namic equilibrium of the system.

• Inertia decoupling. It consists in decoupling the static shapes from the rigid
body motion of the system by way of the inertia matrix. The objective is to find
a set of shapes xs that differs from the static shapes of Eqs (8.5) and (8.10) by a
rigid-body motion,

xs = xs−XRα, (8.13)

and that are orthogonal to the rigid-body modes through the mass matrix. As a
consequence

α =
(
XT

RMT XR
)−1

XT
RMT xs (8.14)

or
xs =

(
I−XR

(
XT

RMT XR
)−1

XT
RMT

)
xs (8.15)

This procedure consists in referring the deformation shapes to the so-called ‘mean
axes’ (3).

Note that rigid-body decoupling uses the transpose of the inertia relief projection
matrix of Eq. (8.11); as a consequence, the decoupled shapes can be obtained as

xs = PT
i xs (8.16)

and, in case inertia relief needs to be applied to static complement shapes, one
obtains

xs = PT
i K−1Pi

[
0
I

]
(8.17)

45

In any case, it is worth noting that when selecting the normal modes of the “omit-
ted” subproblem, frequency range criteria may fail, because the frequencies of
the “omitted” subproblem are related to a virtual system that is constrained in a
manner that does not reflect the real system. The real eigenvalues of the modal
element are those related to the entire base, namely the selected “omitted” modes
augmented by the static shapes. However one should resist the temptation of re-
fining the selection of the shapes based on the frequency range of interest consid-
ering the real eigenvalues of the modal element, because the resulting high fre-
quencies are brought in by the static shapes, so eliminating those modes would
bring back to a poor, although different, representation of the local effects.

8.3 The modal Joint

8.3.1 Static Analysis
One application of the modal joint is that of introducing very detailed deformable com-
ponents that connect multibody nodes in a rather general and fully coupled manner.
This model requires a positive definite modal stiffness matrix (record group 10 in the
FEM model file) and a modal inertia matrix (record 9 in the FEM model file) filled with
zeros; at the same time, no record group 11 or 12 is required, although record group 12
may be used in case rigid body inertia must be accounted for when considering rigid
body motion, resulting in a hybrid model, with rigid body dynamics and statical defor-
mation modeling. Record group 11 could be used as well, but it would result in adding
unnecessary overhead related to the computation and the use of invariants that should
be zero.

8.3.2 Dynamic Analysis with Detailed Inertia Forces
This is the default case, where generalized inertia properties refer to the deformed
configuration, apart from selected simplifications. This approach requires the presence
of record group 11 in the FEM model file, which contains detailed per-FEM node
inertia properties.

8.3.3 Dynamic Analysis with Coarse Inertia Forces
This is a variant of the previous section, where inertia properties are referred to the
undeformed shape of the body. For this case, the user must use record group 12 instead
of record group 11, thus only providing global inertia properties and no details of the
FEM model inertia distribution.

8.4 Numerical Example
The example runs an analysis where two geometrically identical modal elements are
run in parallel. The two models have the same rigid body inertia properties, but dif-

46

ferent inertia distribution, so that in the first case the deformation is essentially static,
while in the second case it has well-defined dynamics.

begin: data;
problem: initial value; # the default

end: data;

begin: initial value;
initial time: 0.;
final time: 10.;
time step: 1.e-2;

max iterations: 10;
tolerance: 1.e-6;

derivatives coefficient: 1.e-6;
end: initial value;

begin: control data;
structural nodes: 2 + 2;
joints: 1 + 1;
forces: 1 + 1;

end: control data;

begin: nodes;
structural: 11, modal,

null,
eye,
null,
null;

structural: 12, static,
0.,2.,0.,
eye,
null,
null;

structural: 21, modal,
1.,0.,0.,
eye,
null,
null;

structural: 22, static,
1.,2.,0.,
eye,
null,
null;

end: nodes;

begin: elements;
joint: 10, modal,

47

11,
2, # mode number
3, # FEM node number
"hand-made-static.fem",
1, # interface nodes

1003, 12, null;
force: 10, follower,

12, 0.,0.,1., null,
sine, 0.,pi/.1,1.,one,0.;

joint: 20, modal,
21,
2, # mode number
3, # FEM node number
"hand-made-dynamic.fem",
1, # interface nodes

1003, 22, null;
force: 20, follower,

22, 0.,0.,1., null,
sine, 0.,pi/.1,1.,one,0.;

end: elements;

The two models are excited by a nearly impulsive force that causes some rigid
rotation and translation of the bodies; the static model shows a deformation that directly
follows the excitation and vanishes when the model is no longer excited, followed by
rigid body dynamics; the dynamic model shows some dynamic response of the excited
point, which does not quite follow the excitation in a direct manner, but rather results
in an excitation of the dynamic mode of the system, while the rigid body motion is
exactly equivalent to that of the static model.

Launch the simulation using the command

$ mbdyn -f modalbody -o m

48

Compare the motion of the modal node of each body using

gnuplot> p "<awk ’$1==11’ m.mov" u (1.e-2*$0):4,\
"<awk ’$1==21’ m.mov" u (1.e-2*$0):4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 2 4 6 8 10

D
is

p
la

c
e

m
e

n
t

[m
]

Time [s]

static
dynamic

Figure 8.1: Modal node displacement.

Compare the motion of the excited node of each body using

gnuplot> p "<awk ’$1==12’ m.mov" u (1.e-2*$0):4,\
"<awk ’$1==22’ m.mov" u (1.e-2*$0):4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

D
is

p
la

c
e

m
e

n
t

[m
]

Time [s]

static
dynamic

Figure 8.2: Excited node displacement.

49

Compare the response of the excited mode of each body using

gnuplot> p "<awk ’$1==1’ hms.mod" u (1.e-2*$0):2,\
"<awk ’$1==1’ hmd.mod" u (1.e-2*$0):2

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

M
o

d
a

l
v
a

ri
a

b
le

 [
a

d
im

]

Time [s]

static
dynamic

Figure 8.3: Mode amplitude.

50

Bibliography

[1] Jari Mäkinen, Asko Ellman, and Robert Piché. Dynamic simulations of flexible
hydraulic-driven multibody systems using finite strain beam theory. In Fifth Scan-
dinavian International Conference on Fluid Power, Linköping, 1997.

[2] Roy R. Craig Jr. and Mervyn C. C. Bampton. Coupling of substructures for dy-
namic analysis. AIAA Journal, 6(7), July 1968.

[3] J. R. Canavin and P. W. Likins. Floating Reference Frames for Flexible Spacecraft.
Journal of Spacecraft and Rockets, 14(12):724–732, 1977.

51

	Introduction
	Basic Syntax

	Free Rigid Body
	Execution
	Plotting: gnuplot Example

	Rigid Pendulum
	Rigid Chain
	Cantilever Beam
	Piezo-electrically Actuated Beam
	Hydraulically Actuated Beam
	Modal Body
	Introduction
	Kinematics
	The modal Node
	Rigid Body Motion
	Shape Selection

	The modal Joint
	Static Analysis
	Dynamic Analysis with Detailed Inertia Forces
	Dynamic Analysis with Coarse Inertia Forces

	Numerical Example

